Lesson no.24

Hardware Interrupts

The same mechanism as discussed in the previous chapter is used for real interrupts that are generated by external hardware. However there is a single pin outside the processor called the INT pin that is used by external hardware to generate interrupts. The detailed operation that happens outside the process when an interrupt is generated is complex and only a simplified view will be discussed here; the view that is relevant to an assembly language programmer. There are many external devices that need the processor’s attention like the keyboard, hard disk, floppy disk, sound card. All of them need real time interrupts at some point in their operation. For example if a program is busy in some calculations for three minutes the key strokes that are hit meanwhile should not be wasted. Therefore when a key is pressed, the INT signal is sent, an interrupt generated and the interrupt handler stores the key for later use. Similarly when the printer is busy printing we cannot send it more data. As soon as it gets free from the previous job it interrupts the processor to inform that it is free now. There are many other examples where the processor needs to be informed of an external event. If the processor actively monitors all devices instead of being automatically interrupted then it there won’t be any time to do meaningful work.

Since there are many devices generating interruptsand there is only one pin going inside the processor and one pin cannot be technically drived by more than one source a controller is used in between called the Programmable Interrupt Controller (PIC). It has eight input signals and one output signal. It assigns priorities to its eight input pins from 0 to 7 so that if more than one interrupt comes at the same times, the highest priority one is forwarded and the rest are held till that is serviced. The rest are forwarded one by one according to priority after the highest priority one is completed. The original IBM XT computer had one PIC so there were 8 possible interrupt sources. However IBM AT and later computers have two PIC totaling 16 possible interrupt sources. They are arrange is a special cascade master slave arrangement so that only one output signal comes towards the processor. However we will concentrate on the first interrupt controller only.

The priority can be understood with the following example. Consider eight parallel switches which are all closed and connected to form the output signal. When a signal comes on one of the switches, it is passed on to the output and this switch and all below it are opened so that no further signals can pass through it. The higher priority switches are still closed and the signal on them can be forwarded. When the proessor signals that it is finished with the processing the switches are closed again and any waiting interrupts may be forwarded. The way the processor signals ending of the interrupt service routine is by using a special mechanism discussed later.

The eight input signals to the PIC are called Interrupt Requests (IRQ). The eight lines are called IRQ 0 to IRQ 7. These are the input lines of the 8451.
 For example IRQ 0 is drived by a timer device. The timer device keeps generating interrupts with a specified frequency. IRQ 1 is drived by the keyboard when generates an interrupts when a key is pressed or released. IRQ 2 is the cascading interrupt connected to the output of the second 8451 in the machine. IRQ 3 is connected to serial port COM 2 while IRQ 4 is connected to serial port COM 1. IRQ 5 is used by the sound card or the network card or the modem. An IRQ conflict means that two devices in the system want to use the same IRQ line. IRQ 6 is used by the floppy disk drive while IRQ 7 is used by the parallel port. 

Each IRQ is mapped to a specific interrupt in the system. This is called the IRQ to INT mapping. IRQ 0 to IRQ 7 are consecutively mapped on interrupts 8 to F. This mapping is done by the PIC and not the processor. The actual mechanism fetches one instruction from the PIC whenever the INT pin is signaled instead of the memory. We can program the PIC to generate a different set of interrupts on the same interrupt requests. From the perspective of an assembly language programmer an IRQ 0 is translated into an INT 8 without any such instruction in the program and that’s all. Therefore an IRQ 0, the highest priority interrupt, is generated by the timer chip at a precise frequency and the handler at INT 8 is invoked which updates the system time. A key press generates IRQ 1 and the INT 9 handler is invoked which stores this key. To handler the timer and keyboard interrupts one can replace the vectors corresponding to interrupt 8 and 9 respectively. For example if the timer interrupt is replaced and the floppy is accessed by some program, the floppy motor and its light will remain on for ever as in the normal case it is turned off by the timer interrupt after two seconds in anticipation that another floppy access might be needed otherwise the time motor takes to speed up will be needed again.

We have seen that an interrupt request from a device enters the PIC as an IRQ, from there it reaches the INT pin of the processor, the proessor receives the interrupt number from the PIC, generates the designated interrupt, and finally the interrupt handler gain control and can do whatever is desired. At the end of servicing the interrupt the handler should inform the PIC that it is completed so that lower priority interrupts can be sent from the PIC. This signal is called an End Of Interrupt (EOI) signal and is sent through the I/O ports of the interrupt controller.
� 8451 is the technical number of the PIC.


� The programs discussed from now onwards in the book must be executed in pure DOS and not in a DOS window so that we are in total control of the PIC and other devices.





